*Главная страница 
 Linux Intro  
 Linux File System  
 Linux Text Obolocki  
 Linux Graf Obolocki  
 Linux Structure  
 Linux Memory  
 Set Linux
 Linux Command  
 HOWTO  
 FAQ  
 Securing and Optimizing Linux  
 
*ФАЙЛОВАЯ СИСТЕМА ОС LINUX (Linux File System)

 

    2. Системный аспект файловой системы

2.1. Типы файловых систем, поддерживаемых в Линукс

2.2. Структура дискового раздела в ext2fs

2.3. Индексные дескрипторы файлов

2.4. Система адресации данных

2.5. VFS

2.6. Новые файловые системы

2.7. Журналируемые файловые системы

2.8. Файловая система ReiserFS

Литература

2. Системный аспект файловой системы

Как уже было сказано , файловая система - одна из основных составных частей любой операционной системы, так как она обеспечивает хранение информации на физических носителях и доступ приложений к этой информации. В разделе 4 была достаточно подробно рассмотрена та сторона файловой системы, которая обращена к пользователю - логическая структура каталогов и файлов. В этом разделе мы рассмотрим внутренние механизмы работы файловых систем, то есть обратную (невидимую для пользователя) сторону файловой системы. Эта сторона обращена к физическим устройствам и определяет способ хранения информации на носителях и механизмы записи и извлечения этой информации по запросам приложений. Здесь в основе всего лежит способ адресации отдельных участков носителя и механизмы размещения отрезков файла по этим участкам.

Но, прежде чем перейти к описанию конкретных механизмов, стоит отметить, что Линукс умеет работать с несколькими типами файловых систем. Основной файловой системой для Линукс является "вторая расширенная файловая система" (second extended filesystem), которую кратко обозначают как ext2fs. Именно ее механизмы будут подробно рассматриваться в настоящем разделе. Но прежде, чем перейти к ее рассмотрению, ненадолго отвлечемся для того, чтобы перечислить некоторые типы файловых систем, которые поддерживаются в Линукс. Эту табличку нельзя считать полной по той простой причине, что работа по созданию новых типов файловых систем для Линукс продолжается постоянно. Примером вновь разрабатываемых файловых систем являются журналируемая файловая система JFS фирмы IBM, файловая система ReiserFS. Эти системы и их отличия от основной на настоящий момент файловой системы Линукс, ext2fs, мы постараемся рассмотреть в конце этого раздела.

2.1. Типы файловых систем, поддерживаемых в Линукс

В этой табличке мы просто кратко перечисляются основные типы файловых систем, с которыми может работать Линукс. А теперь подробнее рассмотрим основной на сегодняшний день тип файловой системы для Линукс - ext2fs.("Научить" Линукс использовать эти и другие ФС можно после переконфигурирования ядра ОС)

 

Тип
Назначение
minix Файловая система minix - это первая файловая система, которая использовалась в Линукс. Она имела массу недостатков: ограничения размера раздела жесткого диска 64 мегабайтами; длина имени файла была ограничена 30 символами и т.д. Она продолжает использоваться для дискет и RAM-дисков.
extfs Еще одна из ранних версий файловой системы для Linux, расширение файловой системы minix. В настоящее время заменена файловой системой ext2 и уже не используются
ext2fs Вторая расширенная файловая система (second extended filesystem) была создана как расширение расширенной файловой системы (extfs). ext2fs обеспечивает более высокую производительность (в части скорости и использования центрального процессора), поддерживаются длинные имена и большие размеры файлов.
xiaf Файловая система Xiaf была создана на основе minix с целью обеспечения большей устойчивости и безопасности. Она обеспечивает выполнение основных функций файловой системы без излишней сложности.
msdos Файловая система, используемая для разделов, сформатированных в MS-DOS и Windows. Имена файлов в msdos должны удовлетворять стандарту 8.3.
umsdos Файловая система UMS-DOS является расширением файловой системы DOS, используемым под Linux. В ней добавлено использование длинных имен файлов, идентификаторы пользователя и группы (UID/GID), разрешения в стиле POSIX и специальные файлы (устройства, именованные каналы и т.д.) при этом совместимость с DOS не потеряна.
hpfs Файловая система для разделов OS/2. В Линукс обеспечивается только чтение из разделов hpfs.
proc Это файловая система, которая используется для обращения к структурам данных ядра. Файлы этой системы не занимают дискового пространства. Подробнее см. man proc(5).
nfs Сетевая файловая система, используемая для доступа к дискам, расположенным на удаленных компьютерах.
swap Раздел или файл свопинга OC Linux
sysv Файловая система Unix Systen V. Она поддерживает файловые системы Xenix FS, SystemV/386 FS и Coherent FS.
iso9660 Файловая система для монтирования CD-ROM, соответствующая стандарту ISO 9660.
vfat Файловая система FAT-32. Поддерживаются длинные имена файлов.
smb Это сетевая файловая система, которая поддерживает протокол SMB, используемый Windows, Windows NT и Lan Manager. Для того, чтобы использовать эту файловую систему, надо иметь специальную программу монтирования smbmount.
ncpfs Это сетевая файловая система, обеспечивающая поддержку протокола NCP, применяемого в Novell NetWare. Для того, чтобы использовать эту файловую систему, надо тоже иметь специальную программу, которую можно найти на сайте ftp://linux01.gwdg.de/pub/ncpfs.

 

2.2. Структура дискового раздела в ext2fs

Производители жестких дисков обычно поставляют свои изделия отформатированными на низком уровне. Насколько я знаю, это означает, что все дисковое пространство с помощью специальных меток разбито на "сектора", размером 512 байт. Такой диск (или дисковый раздел) должен быть подготовлен для использования в определенной операционной системе. В MS-DOS или Windows процедура подготовки называется форматированием, а в Линукс - созданием файловой системы. Создание файловой системы ext2fs заключается в создании в разделе диска определенной логической структуры. Эта структура строится следующим образом. Во-первых, на диске выделяется загрузочная область(рис. 2.). Загрузочная область создается в любой файловой системе. На первичном разделе она содержит загрузочную запись - фрагмент кода, который инициирует процесс загрузки операционной системы при запуске. На других разделах эта область не используется. Все остальное пространство на диске делится на блоки. Блок может иметь размер от 1, 2 или 4 килобайта. Блок является адресуемой единицей дискового пространства. Выделение места файлам осуществляется целыми блоками, поэтому при выборе размера блока приходится идти на компромисс. Большой размер блока, как правило, сокращает число обращений к диску при чтении или записи файла, но зато увеличивает долю нерационально используемого пространства, особенно, при наличии большого числа файлов маленького размера.

 

Рис.2. Структура EXT2FS

 

Блоки, в свою область объединяются в группы блоков(ext2fs). Группы блоков в файловой системе и блоки внутри группы нумеруются последовательно, начиная с 1. Первый блок на диске имеет номер 1 и принадлежит группе с номером 1. Общее число блоков на диске (в разделе диска) является делителем объема диска, выраженного в секторах. А число групп блоков не обязано делить число блоков, потому что последняя группа блоков может быть не полной. Начало каждой группы блоков имеет адрес, который может быть получен как ((номер группы - 1)* (число блоков в группе)).

Каждая группа блоков имеет одинаковое строение. Ее структура представлена в следующей табличке.

 

ext2fs

Суперблок
Group Descriptors
Block Bitmap
INode Bitmap

 Таблица индексных дескрипторов
(INode Table)
 

 
 Область блоков данных
 
 

 

 

Первый элемент этой структуры (суперблок) - одинаков для всех групп, а все остальные - индивидуальны для каждой группы. Суперблок хранится в первом блоке каждой группы блоков (за исключением группы 1, в которой в первом блоке расположена загрузочная запись). Суперблок является начальной точкой файловой системы. Он имеет размер 1024 байта и всегда располагается по смещению 1024 байта от начала файловой системы. Наличие нескольких копий суперблока объясняется чрезвычайной важностью этого элемента файловой системы. Дубликаты суперблока используются при восстановлении файловой системы после сбоев.

Информация, хранимая в суперблоке, используется для организации доступа к остальным данным на диске. В суперблоке определяется размер файловой системы, максимальное число файлов в разделе, объем свободного пространства и содержится информация о том, где искать незанятые участки. При запуске ОС суперблок считывается в память и все изменения файловой системы вначале находят отображение в копии суперблока, находящейся в ОП, и записываются на диск только периодически. Это позволяет повысить производительность системы, так как многие пользователи и процессы постоянно обновляют файлы. С другой стороны, при выключении системы суперблок обязательно должен быть записан на диск, что не позволяет выключать компьютер простым выключением питания. В противном случае, при следующей загрузке информация, записанная в суперблоке, окажется не соответствующей реальному состоянию файловой системы.

Суперблок имеет структуру, которая представлена в нижеследующей таблице

 

Название поля Тип Комментарий
s_inodes_count ULONG Число индексных дескрипторов в файловой системе
s_blocks_count ULONG Число блоков в файловой системе
s_r_blocks_count ULONG Число блоков, зарезервированных для суперпользователя

s_free_blocks_count ULONG Счетчик числа свободных блоков
s_free_inodes_count ULONG Счетчик числа свободных индексных дескрипторов
s_first_data_block ULONG Первый блок, который содержит данные. В зависимости от размера блока, это поле может быть равно 0 или 1.
s_log_block_size ULONG Индикатор размера логического блока: 0 = 1 Кб; 1 = 2 Кб; 2 = 4 Кб.
s_log_frag_size LONG Индикатор размера фрагментов (кажется, понятие фрагмента в настоящее время не используется)
s_blocks_per_group ULONG Число блоков в каждой группе блоков
s_frags_per_group ULONG Число фрагментов в каждой группе блоков
s_inodes_per_group ULONG Число индексных дескрипторов (inodes) в каждой группе блоков
s_mtime ULONG Время, когда в последний раз была смонтирована файловая система.
s_wtime ULONG Время, когда в последний раз производилась запись в файловую систему
s_mnt_count USHORT Счетчик числа монтирований файловой системы. Если этот счетчик достигает значения, указанного в следующем поле (s_max_mnt_count), файловая система должна быть проверена (это делается при перезапуске), а счетчик обнуляется.
s_max_mnt_count SHORT Число, определяющее, сколько раз может быть смонтирована файловая система
s_magic USHORT "Магическое число" (0xEF53), указывающее, что файловая система принадлежит к типу ex2fs
s_state USHORT Флаги, указывающее текущее состояние файловой системы (является ли она чистой (clean) и т.п.)
s_errors USHORT Флаги, задающие процедуры обработки сообщений об ошибках (что делать, если найдены ошибки).
s_pad USHORT Заполнение
s_lastcheck ULONG Время последней проверки файловой системы
s_checkinterval ULONG Максимальный период времени между проверками файловой системы
s_creator_os ULONG Указание на тип ОС, в которой создана файловая система
s_rev_level ULONG Версия (revision level) файловой системы.
s_reserved ULONG[235] Заполнение до 1024 байт

 

Вслед за суперблоком расположено описание группы блоков (Group Descriptors). Это описание представляет собой массив, имеющий следующую структуру.

 

Название поля Тип Назначение
bg_block_bitmap ULONG Адрес блока, содержащего битовую карту блоков (block bitmap) данной группы
bg_inode_bitmap ULONG Адрес блока, содержащего битовую карту индексных дескрипторов (inode bitmap) данной группы
bg_inode_table ULONG Адрес блока, содержащего таблицу индексных дескрипторов (inode table) данной группы
bg_free_blocks_count USHORT Счетчик числа свободных блоков в данной группе
bg_free_inodes_count USHORT Число свободных индексных дескрипторов в данной группе
bg_used_dirs_count USHORT Число индексных дескрипторов в данной группе, которые являются каталогами
bg_pad USHORT Заполнение
bg_reserved ULONG[3] Заполнение

 

Размер описания группы блоков можно вычислить как (размер_группы_блоков_в_ext2 * число_групп) / размер_блока (при необходимости округляем).

Информация, которая хранится в описании группы, используется для того, чтобы найти битовые карты блоков и индексных дескрипторов, а также таблицу индексных дескрипторов. Не забывайте, что блоки и группы блоков нумеруются начиная с 1.

Битовая карта блоков (block bitmap) - это структура, каждый бит которой показывает, отведен ли соответствующий ему блок какому-либо файлу. Если бит равен 1, то блок занят. Эта карта служит для поиска свободных блоков в тех случаях, когда надо выделить место под файл, Битовая карта блоков занимает число блоков, равное (число_блоков_в_группе / 8) / размер_блока (при необходимости округляем).

Битовая карта индексных дескрипторов выполняет аналогичную функцию по отношению к таблице индексных дескрипторов: показывает какие именно дескрипторы заняты.

Следующая область в структуре группы блоков служит для хранения таблицы индексных дескрипторов файлов. Структура самого индексного дескриптора подробнее рассматривается в следующем подразделе.

Ну, и наконец, все оставшееся место в группе блоков отводится для хранения собственно файлов.

2.3. Индексные дескрипторы файлов

Каждому файлу на диске соответствует один и только один индексный дескриптор файла, который идентифицируется своим порядковым номером - индексом файла. Это означает, что число файлов, которые могут быть созданы в файловой системе, ограничено числом индексных дескрипторов, которое либо явно задается при создании файловой системы, либо вычисляется исходя из физического объема дискового раздела.

Индексный дескриптор файла имеет следующее строение:

 

Название поля Тип Описание
i_mode USHORT Тип и права доступа к данному файлу.
i_uid USHORT Идентификатор владельца файла (Owner Uid).
i_size ULONG Размер файла в байтах.
i_atime ULONG Время последнего обращения к файлу (Access time).
i_ctime ULONG Время создания файла.
i_mtime ULONG Время последней модификации файла.
i_dtime ULONG Время удаления файла.
i_gid USHORT Идентификатор группы (GID).
i_links_count USHORT Счетчик числа связей (Links count).
i_blocks ULONG Число блоков, занимаемых файлом.
i_flags ULONG Флаги файла (File flags)
i_reserved1 ULONG Зарезервировано для ОС
i_block ULONG[15] Указатели на блоки, в которых записаны данные файла (это поле подробно описано в разделе 21.4)
i_version ULONG Версия файла (для NFS)
i_file_acl ULONG ACL файла
i_dir_acl ULONG ACL каталога
i_faddr ULONG Адрес фрагмента (Fragment address)
i_frag UCHAR Номер фрагмента (Fragment number)
i_fsize UCHAR Размер фрагмента (Fragment size)
i_pad1 USHORT Заполнение 
i_reserved2 ULONG[2] Зарезервировано 

 

Поле типа и прав доступа к файлу представляет собой двух-байтовое слово, каждый бит которого служит флагом, индицирующим отношение файла к определенному типу или установку одного конкретного права на файл.

 

Идентификатор Значение Назначение флага (поля)
S_IFMT F000 Маска для типа файла
S_IFSOCK A000 Доменное гнездо (socket)
S_IFLNK C000 Символическая ссылка
S_IFREG 8000 Обычный (regular) файл
S_IFBLK 6000 Блок-ориентированное устройство
S_IFDIR 4000 Каталог
S_IFCHR 2000 Байт-ориентированное (символьное) устройство
S_IFIFO 1000 Именованный канал (fifo)
     
S_ISUID 0800 SUID - бит смены владельца
S_ISGID 0400 SGID - бит смены группы
S_ISVTX 0200 Бит сохранения задачи (sticky bit)
     
S_IRWXU 01C0 Маска прав владельца файла
S_IRUSR 0100 Право на чтение
S_IWUSR 0080 Право на запись
S_IXUSR 0040 Право на выполнение
     
S_IRWXG 0038 Маска прав группы
S_IRGRP 0020 Право на чтение
S_IWGRP 0010 Право на запись
S_IXGRP 0008 Право на выполнение
     
S_IRWXO 0007 Маска прав остальных пользователей
S_IROTH 0004 Право на чтение
S_IWOTH 0002 Право на запись
S_IXOTH 0001 Право на выполнение

 

Среди индексных дескрипторов имеется несколько дескрипторов, которые зарезервированы для специальных целей и играют особую роль в файловой системе. Это следующие дескрипторы

 

Идентификатор Значение Описание
EXT2_BAD_INO 1 Индексный дескриптор, в котором перечислены адреса дефектных блоков на диске (Bad blocks inode)
EXT2_ROOT_INO 2 Индексный дескриптор корневого каталога файловой системы (Root inode)
EXT2_ACL_IDX_INO 3 ACL inode
EXT2_ACL_DATA_INO 4 ACL inode
EXT2_BOOT_LOADER_INO 5 Индексный дескриптор загрузчика (Boot loader inode)
EXT2_UNDEL_DIR_INO 6 Undelete directory inode
EXT2_FIRST_INO 11 Первый незарезервированный индексный дескриптор

 

Самый важный дескриптор в этом списке - дескриптор корневого каталога. Этот дескриптор указывает на корневой каталог, который, подобно всем каталогам, состоит из записей следущей структуры:

Название поля Тип Описание
inode ULONG номер индексного дескриптора (индекс) файла
rec_len USHORT Длина этой записи
name_len USHORT Длина имени файла
name CHAR[0] Имя файла

 

Отдельная запись в каталоге не может пересекать границу блока (то есть должна быть расположена целиком внутри одного блока). Поэтому, если очередная запись не помещается целиком в данном блоке, она переносится в следующий блок, а предыдущая запись продолжается таким образом, чтобы она заполнила блок до конца.

2.4. Система адресации данных

 

Система адресации данных - это одна из самых существенных составных частей файловой системы. Именно система адресации позволяет находить нужный файл среди множества как пустых, так и занятых блоков на диске. В ext2fs система адресации реализуется полем i_block индексного дескриптора файла.

Поле i_block в индексном дескрипторе файла представляет собой массив из 15 адресов блоков. Первые 12 адресов в этом массиве (EXT2_NDIR_BLOCKS [12]) представляют собой прямые ссылки (адреса) на номера блоков, в которых хранятся данные из файла. Следующий адрес в этом массиве (EXT2_IND_BLOCK) является косвенной ссылкой, то есть адресом блока, в котором хранится список адресов следующих блоков с дан

ными из этого файла. В этом блоке могут быть записаны адреса (размер_блока / размер_ULONG) блоков с данными файла.

Следующий адрес в поле i_block индексного дескриптора (EXT2_DIND_BLOCK) указывает на блок двойной косвенной адресации (double indirect block). Этот блок содержит список адресов блоков, которые в свою очередь содержат списки адресов следующих блоков данных того файла, который задается данным индексным дескриптором.

И, наконец, последний адрес (EXT2_TIND_BLOCK) в поле i_block индексного дескриптора задает адрес блока тройной косвенной адресации, то есть блока со списком адресов блоков, которые являются блоками двойной косвенной адресации.

Теперь Вы знаете, как устроены индексные дескрипторы файлов, то есть знаете, как в файловой системе ext2fs осуществляется запись в файл и чтение из файла.

Может быть здесь еще надо бы рассказать о команде mkfs, которая служит для создания файловой системы в разделе диска. , а за более подробными пояснениями читатель может обратиться к интерактивным руководствам.

2.5. Виртуальная файловая система VFS

До сих пор наш рассказ о файловой системе касался только "статических", если можно так выразиться, составных частей файловой системы. Но, я думаю, Вы понимаете, что все это хозяйство обслуживается какими-то программными модулями. Эти программные части можно разделить на две составных части. Одна часть входит в состав ядра и образует так называемую виртуальную файловую систему VFS (рис. 3). VFS обеспечивает унифицированный программный интерфейс к услугам файловой системы, причем безотносительно к тому, какой тип файловой системы (vfat, ext2fs, nfs и т.д.) имеется на конкретном физическом носителе. Поэтому каждая файловая система должна предоставлять еще какие-то конкретные процедуры доступа к своим файлам, для того, чтобы использоваться под Линукс. Виртуальная файловая система VFS, расположенная как бы между приложениями и конкретными файловыми системами, позволяет пользовательским приложениям получать доступ к множеству файловых систем разных типов

 

Рис.3. Схема Virtual File System

2.6. Новые файловые системы

Файловая система ext2fs была создана по образу и подобию файловой системы UNIX (UNIX File System - UFS). Обе они (особенно UFS) создавались еще в те времена, когда диски и другие физические носители данных имели довольно маленький (по современным меркам) объем. Увеличение объема дисков вело к возрастанию объема разделов диска, увеличению размеров отдельных файлов и каталогов. Это породило ряд проблем, связанных с ограниченностью внутренних структур данных файловой системы.

Существуют две основных проблемы этого рода:

  • Эти структуры не способны работать с носителями информации увеличенного объема. В них отведено строго фиксированное число бит для хранения данных о размере дисковых разделов и размерах файлов, фиксированное число бит для хранения логических номеров блоков и так далее. Как следствие, число файлов и каталогов и их размер ограничены.
  • Вторая проблема связана с производительностью. В силу заложенных в старые файловые системы алгоритмов решение некоторых задач на носителях увеличенного объема стало требовать слишком большого времени. Одним из самых характерных примеров такого рода проблем является трудоемкость восстановления файловой системы после сбоев (например, после неожиданного отключения питания). Это восстановление выполняется с помощью программы fsck и для очень больших дисков стало требовать нескольких часов.

Естественно, что появление этих проблем породило и попытки их решения. Были разработаны новые типы файловых систем, при создании которых учитывались требования масштабируемости. Наиболее известными разработками файловых систем новых типов являются:

  • файловая система ext3fs ;
  • XFS;
  • журналируемая файловая система JFS фирмы IBM;
  • ReiserFS .

В следующей табличке приведены данные по увеличению основных параметров, обеспечиваемых новыми файловыми системами. Данные заимствованы из статьи Juan I. Santos Florido "Journal File Systems", опубликованной в 55-ом выпуске Linux Gazette (July 2000).

 

 
Размер блока
Максим. размер файловой системы
Максим. размер файла
Ext3FS
1KB-4KB
4Tb
2GB
XFS
от 512 байт до 64 KB
18 тысяч петабайт
9 тысяч петабайт
JFS
512, 1024, 2048, 4096 байт
от 4 петабайт (при 512-байтных блоках) до 32 петабайт (при 4-килобайтовых блоках)
от 512 терабайт (при 512-байтовых блоках) до 4 петабайт (при 4-килобайтовых блоках)
ReiserFS
До 64KB
Пока что фиксирован, 4KB
4GB of blocks, 16 Tb
4GB, 2^10 petabytes in ReiserFS (3.6.xx)

 

2.7. Журналируемые файловые системы

Основная цель, которая преследуется при создании журналируемых файловых систем, насколько я понял, состоит в том, чтобы обеспечить быстрое восстановление системы после сбоев (например, после потери питания). Дело в том, что если произойдет такой сбой, то часть информации о расположении файлов теряется, поскольку не все изменения сразу записываются на диск. После этого программа fsck вынуждена просматривать весь диск блок за блоком (пользуясь битовыми матрицами занятых блоков и индексных дескрипторов) с целью восстановления потерянных связей. При увеличении размера дисков вдвое, вдвое увеличивается и время, необходимое для просмотра всего диска. А при тех объемах, которых достигают современные диски, особенно на серверах, время, необходимое для того, чтобы просмотреть весь диск, стало недопустимо велико: оно стало достигать часов и даже суток. А сервер в это время не отзывается! Кроме того, нет гарантии, что все связи удастся восстановить.

В журналируемых файловых системах для решения этой проблемы применяют технику транзакций, развитую в теории баз данных. Суть этой техники в том, что действие не считается завершенным, пока все изменения не сохранены на диске. А чтобы сбои, происходящие в течение времени, необходимого для завершения всех операций, не приводили к необратимым последствиям, все действия и все изменяемые данные протоколируются. Если сбой все-таки произойдет, то по этому протоколу можно вернуть систему в безошибочное состояние.

Главное отличие в технике транзакций, применяемой в базах данных, от аналогичной техники, применяемой в журналируемых файловых системах, состоит в том, что в базах данных сохраняются в протоколе как сами изменяемые данные, так и вся управляющая информация, в то время как понятие транзакции в файловых системах подразумевает сохранение только мета-данных: индексных дескрипторов изменяемого файла, битовых карт распределения свободных блоков и свободных индексных дескрипторов. Дело в том, что если сохранять все изменяемые данные, то теряется смысл кеширования записи на диск и уменьшается скорость дисковых операций. Мета-данные же, во-первых, меньше по размеру, а, во-вторых, сохраняются в специально выделенной области диска, что позволяет избежать чрезмерных затрат времени на ведение протокола.

Файловые системы ext3fs и JFS являются журналируемыми. Надо отметить, что ext3fs не является совершенно новой разработкой, а является просто надстройкой над ext2fs, обеспечивающей ведение журнала и организацию транзакций. Файловые системы XFS и JFS являются открытыми версиями коммерческих файловых систем.

2.8. Файловая система ReiserFS

Кроме проблемы быстрого восстановления после сбоев, в файловой системе ext2fs имеется еще несколько нерешенных проблем. Одна из самых насущных - это проблема нерационального использования дискового пространства. Конечно, ext2fs использует диск гораздо более рационально, чем FAT, но, как Вам хорошо известно, "памяти много не бывает"! Собственно проблема возникает из-за следующего противоречия:

  •  если размер блока выбрать большим (кластер по 32К в FAT), то при сохранении большого числа мелких файлов на диске неразумно используется дисковое пространство, так как маленькие файлы (и концы больших файлов) занимают целые блоки (Juan I. Santos Florido в своей статье называет это "внутренней фрагментацие

  • если размер блока выбрать маленьким (512 байт), то снижается производительность ввода/вывода, так как надо прочитать много блоков, которые могут быть разбросаны по диску (это "внешняя фрагментация").

Еще две проблемы, с которыми мы сталкиваемся в файловой системе ext2fs, связаны с поиском.

  1.  Первая проблема возникает при записи на диск нового файла. Поскольку распределение свободных блоков хранится в виде битовой карты свободных блоков и свободных индексных дескрипторов, то файловая система вынуждена производить последовательный просмотр этих массивов для нахождения свободного места. В худшем случае это может потребовать времени, пропорционального объему диска.

  2. Вторая проблема поиска связана с поиском файлов в больших каталогах. Поскольку файлы мы ищем по именам, приходится последовательно просматривать все записи в каталоге. Время такого поиска тоже пропорционально размеру каталога и вырастает в проблему при больших размерах каталогов. Между тем методы снижения трудоемкости поиска давно разработаны, только надо для хранения информации о свободных объектах использовать не простые списки, а несколько более сложные структуры данных. В системе ReiserFS для этого применяются так называемые "сбалансированные деревья" или "B+Trees", время поиска в которых пропорционально не количеству объектов (файлов в каталоге или числа блоков на диске), а логарифму этого числа. В сбалансированном дереве все ветви (пути от корня до "листа") имеют одинаковую (или примерно одинаковую) длину. ReiserFS использует сбалансированные деревья для хранения всех объектов файловой системы : файлов в каталогах, данных о свободных блоках и т.д. Это позволяет существенно повысить производительность обращения к дискам.

 

Кроме того, ReiserFS является журналируемой, то есть в ней решена и проблема быстрого восстановления после сбоев. Большего об устройстве новых типов файловых систем я пока не могу сказать, поскольку информации о них довольно мало, а в исходниках копаться...

 

Литература

 

Костромин В.А.  Самоучитель Linux для пользователя. ─ СПб.: БХВ-Петербург, 2003.

 

 
Rambler's Top100   Яндекс цитирования
Hosted by uCoz